公开数据集
数据结构 ? 652.3M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
CODA is the world's first real-world self-driving corner case dataset
of 1500 scenes (frames) containing nearly 6K corner cases.
CODA is split into a validation set of 1000 images
and a test set of 500 images.
The validation set contains 4008 objects of 27 object categories, whereas the test set contains 1929 objects of 34 object categories, including 7 categories absent in the test set.
Validation set
Corner case annotations are stored in "val/corner_case.json"
in COCO-compatible format.
Out of the 1000 scenes of the validation set, 717
are taken from ONCE, 89 are taken from nuScenes, and 194 are taken from
KITTI.
Due to license issues, for nuScenes and KITTI, only
corner case annotations and the correponding sample indices/tokens of
original datasets are provided ("val/kitti_indices.json" and "val/nuscenes_sample_tokens.json").
For ONCE, in addition to corner case annotations, we
also provide the front-view images captured by the camera named "cam03".
The images taken from onCE are named in the format of "[sequence_id]_[frame_id].jpg" (000001_1616005007200.jpg, for example).
The two identifiers ("sequence_id" and "frame_id") can be used to extract other data (e.g., lidar point clouds) from the onCE dataset if needed.
Data Format
The annotation file keeps consistent with the COCO format and contains three keys: "images", "categories" and "annotations".
"images": { "file_name": -- File name. "id": -- Unique image id. "height": -- Height of the image. "width": -- Width of the image. "period": -- Period tag. "weather": -- Weather tag. }
"annotations": { "image_id": -- The image id for this annotation. "category_id": -- The category id. "bbox": -- Coordinate of boundingbox [x, y, w, h]. "area": -- Area of this annotation (w * h). "id": -- Unique annotation id. "iscrowd": -- Whether this annotation is crowd. }
"categories": { "name": -- Unique category name. "id": -- Unique category id. "supercategory": -- The supercategory for this category. }
Data Annotation
Image domain tags (i.e., periods and weather conditions) and 2D bounding boxes with classes for all CODA images.
Semantic Labels
CODA annotation can be grouped into 7 super-categories including pedestrian, cyclist, vehicle, animal, traffic facility, obstruction and misc, which can be further divided into 34 fine-grained categories. Moreover, these categories can also be divided into two collections, namely 1) instances of novel classes and 2) novel instances of common classes. As the names suggest, common classes stand for common object categories annotated by existing autonomous driving benchmarks, such as cars and pedestrians, whereas novel classes stand for the opposites, such as dogs and strollers.
Domain Tags
CODA also provides domain tags for all images including the periods and weather conditions. Specifically, we annotate the period tags to be either day or night and select the weather condition tags from sunny, cloudy and rainy. We hope the image domain tags can help researchers dig into the underlying reasons of corner cases for reliable object detection.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。