Select Language

AI社区

公开数据集

Symphony Lake数据集,来自无人驾驶地面车辆的500多万张图像捕捉了非结构化的自然环境

Symphony Lake数据集,来自无人驾驶地面车辆的500多万张图像捕捉了非结构化的自然环境

6.6G
515 浏览
0 喜欢
2 次下载
0 条讨论
Computer Science,Programming Classification

Symphony Lake Dataset consists of 121 visual surveys of a lakeshore over more than three years in Metz, France. Unique f......

数据结构 ? 6.6G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Symphony Lake Dataset consists of 121 visual surveys of a lakeshore over more than three years in Metz, France. Unique from roadway datasets, it adds breadth to a space at a time when larger and more diverse datasets are needed to train data hungry machine learning methods. Over 5 million images from an unmanned surface vehicle capture the unstructured, natural environment as it evolved over time. Significant variation in appearance is present on time scales of weeks, seasons, and years. Success in this space may demonstrate advancements in perception, SLAM, and environment monitoring.

    Content

    This is just a portion of the dataset covering the downsampled images recorded from the vehicle. They are organized by directories representing the month and datestamps and images containing the different positions and angles captured.

    Acknowledgements

    The full details and links to other components are available from the following original site:
    http://dream.georgiatech-metz.fr/?q=node/79

    Please cite the following paper if you use the dataset:

    • Griffith, Shane; Chahine, Georges; Pradalier, Cédric; Symphony Lake Dataset, Submitted to IJRR, 2017.

    Relevant Papers:

    • Griffith, Shane; Pradalier, Cédric; Reprojection Flow for Image Registration Across Seasons, British Machine Vision Conference (BMVC), 2016

    • Griffith, Shane; Pradalier, Cédric; Survey Registration for Long-Term Natural Environment Monitoring, Journal of Field Robotics, 2016


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:36 去赚积分?
    • 515浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享