Select Language

公开数据集

对象分割训练数据集,包含货架和手提包中单个对象的136575个RGB-D 图像

对象分割训练数据集,包含货架和手提包中单个对象的136575个RGB-D 图像

Scene:

Image Search,Deep Learning

Data Type:

Classification
所需积分:35 去赚积分?
  • 274浏览
  • 0下载
  • 0点赞
  • 收藏
  • 分享

贡献者查看主页

普林斯顿视觉与机器人实验室

普林斯顿大学(Princeton University),简称“普林斯顿”,是一所私立研究型大学,创建于1746年,位于美国东海岸新泽西州的普林斯顿市,是美国大学协会的14个始创院校之一,也是常春藤联盟成员。

Data Preview ? 131G

    Data Structure ?

    *数据结构实际以真实数据为准

    The object segmentation training dataset contains 136,575 RGB-D images of single objects (from the APC) in the shelf and tote. There are a total of 8,181 unique poses of 39 objects seen from various camera viewpoints. All images are labeled with binary foreground object masks, which were automatically generated to train the self-supervised deep models for 2D object segmentation. Details of the automatic labeling algorithm can be found in the paper. The training dataset also contains HHA maps (Gupta et al.), pre-computed from the depth images.        

    Each scene (in addition to the files described here), contains:        
    scene-XXXX          

    • HHA/frame-XXXXXX.HHA.png - a 24-bit PNG of HHA maps, an encoding of every aligned depth image into three channels at each pixel: horizontal disparity, height above ground, and the angle between the surface normal and the inferred gravity direction (Gupta et al.). All channels are linearly scaled to the 0 - 255 range.

    • masks/frame-XXXXXX.mask.png - an 8-bit PNG binary image of the foreground object mask for each RGB-D frame.


    0相关评论
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。