公开数据集
数据结构 ? 91.3K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Ashwin Srinivasan
Department of Statistics and Data Modeling
University of Strathclyde
Glasgow
Scotland
UK
ross '@' uk.ac.turing
The original Landsat data for this database was generated
from data purchased from NASA by the Australian Centre
for Remote Sensing, and used for research at:
The Centre for Remote Sensing
University of New South Wales
Kensington, PO Box 1
NSW 2033
Australia.
The sample database was generated taking a small section (82
rows and 100 columns) from the original data. The binary values
were converted to their present ASCII form by Ashwin Srinivasan.
The classification for each pixel was performed on the basis of
an actual site visit by Ms. Karen Hall, when working for Professor
John A. Richards, at the Centre for Remote Sensing at the University
of New South Wales, Australia. Conversion to 3x3 neighbourhoods and
splitting into test and training sets was done by Alistair Sutherland.
Data Set Information:
The database consists of the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with the central pixel in each neighbourhood. The aim is to predict this classification, given the multi-spectral values. In the sample database, the class of a pixel is coded as a number.
The Landsat satellite data is one of the many sources of information available for a scene. The interpretation of a scene by integrating spatial data of diverse types and resolutions including multispectral and radar data, maps indicating topography, land use etc. is expected to assume significant importance with the onset of an era characterised by integrative approaches to remote sensing (for example, NASA's Earth Observing System commencing this decade). Existing statistical methods are ill-equipped for handling such diverse data types. Note that this is not true for Landsat MSS data considered in isolation (as in this sample database). This data satisfies the important requirements of being numerical and at a single resolution, and standard maximum-likelihood classification performs very well. Consequently, for this data, it should be interesting to compare the performance of other methods against the statistical approach.
One frame of Landsat MSS imagery consists of four digital images of the same scene in different spectral bands. Two of these are in the visible region (corresponding approximately to green and red regions of the visible spectrum) and two are in the (near) infra-red. Each pixel is a 8-bit binary word, with 0 corresponding to black and 255 to white. The spatial resolution of a pixel is about 80m x 80m. Each image contains 2340 x 3380 such pixels.
The database is a (tiny) sub-area of a scene, consisting of 82 x 100 pixels. Each line of data corresponds to a 3x3 square neighbourhood of pixels completely contained within the 82x100 sub-area. Each line contains the pixel values in the four spectral bands (converted to ASCII) of each of the 9 pixels in the 3x3 neighbourhood and a number indicating the classification label of the central pixel. The number is a code for the following classes:
Number Class
1 red soil
2 cotton crop
3 grey soil
4 damp grey soil
5 soil with vegetation stubble
6 mixture class (all types present)
7 very damp grey soil
NB. There are no examples with class 6 in this dataset.
The data is given in random order and certain lines of data have been removed so you cannot reconstruct the original image from this dataset.
In each line of data the four spectral values for the top-left pixel are given first followed by the four spectral values for the top-middle pixel and then those for the top-right pixel, and so on with the pixels read out in sequence left-to-right and top-to-bottom. Thus, the four spectral values for the central pixel are given by attributes 17,18,19 and 20. If you like you can use only these four attributes, while ignoring the others. This avoids the problem which arises when a 3x3 neighbourhood straddles a boundary.
Attribute Information:
The attributes are numerical, in the range 0 to 255.
Relevant Papers:
N/A
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。