公开数据集
数据结构 ? 0M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Origin:
Michalski,R.S.
Learning by being told and learning from examples: an experimental comparison of the two methodes of knowledge acquisition in the context of developing an expert system for soybean desease diagnoiss",
International Journal of Policy Analysis and Information Systems, 1980, 4(2), 125-161.
Donor:
Doug Fisher (dfisher%vuse '@' uunet.uucp)
Data Set Information:
A small subset of the original soybean database. See the reference for Fisher and Schlimmer in soybean-large.names for more information.
Steven Souders wrote:
> Figure 15 in the Michalski and Stepp paper (PAMI-82) says that the
> discriminant values for the attribute ConDITION OF FRUIT PODS for the
> classes Rhizoctonia Root Rot and Phytophthora Rot are "few or none"
> and "irrelevant" respectively. However, in the SOYBEAN-SMALL dataset
> I got from UCI, the value for this attribute is "dna" (does not apply)
> for both classes. I show the actual data below for cases D3
> (Rhizoctonia Root Rot) and D4 (Phytophthora Rot). According to the
> attribute names given in soybean-large.names, FRUIT-PODS is attribute
> #28. If you look at column 28 in the data below (marked with arrows)
> you'll notice that all cases of D3 and D4 have the same value. Thus,
> the SOYBEAN-SMALL dataset from UCI could NOT have produced the results
> in the Michalski and Stepp paper.
I do not have that paper, but have found what is probably a later variation of that figure in Stepp's dissertation, which lists the value "normal" for the first 2 classes and "irrelevant" for the latter 2 classes. I believe that "irrelevant" is used here as a synonym for "not-applicable", "dna", and "does-not-apply". I believe that there is a mis-print in the figure he read in their PAMI-83 article.
I have checked over each attribute value in this database. It corresponds exactly with the copies listed in both Stepp's and Fisher's dissertations.
Attribute Information:
1. date: april,may,june,july,august,september,october,?.
2. plant-stand: normal,lt-normal,?.
3. precip: lt-norm,norm,gt-norm,?.
4. temp: lt-norm,norm,gt-norm,?.
5. hail: yes,no,?.
6. crop-hist: diff-lst-year,same-lst-yr,same-lst-two-yrs,
same-lst-sev-yrs,?.
7. area-damaged: scattered,low-areas,upper-areas,whole-field,?.
8. severity: minor,pot-severe,severe,?.
9. seed-tmt: none,fungicide,other,?.
10. germination: 90-100%,80-89%,lt-80%,?.
11. plant-growth: norm,abnorm,?.
12. leaves: norm,abnorm.
13. leafspots-halo: absent,yellow-halos,no-yellow-halos,?.
14. leafspots-marg: w-s-marg,no-w-s-marg,dna,?.
15. leafspot-size: lt-1/8,gt-1/8,dna,?.
16. leaf-shread: absent,present,?.
17. leaf-malf: absent,present,?.
18. leaf-mild: absent,upper-surf,lower-surf,?.
19. stem: norm,abnorm,?.
20. lodging: yes,no,?.
21. stem-cankers: absent,below-soil,above-soil,above-sec-nde,?.
22. canker-lesion: dna,brown,dk-brown-blk,tan,?.
23. fruiting-bodies: absent,present,?.
24. external decay: absent,firm-and-dry,watery,?.
25. mycelium: absent,present,?.
26. int-discolor: none,brown,black,?.
27. sclerotia: absent,present,?.
28. fruit-pods: norm,diseased,few-present,dna,?.
29. fruit spots: absent,colored,brown-w/blk-specks,distort,dna,?.
30. seed: norm,abnorm,?.
31. mold-growth: absent,present,?.
32. seed-discolor: absent,present,?.
33. seed-size: norm,lt-norm,?.
34. shriveling: absent,present,?.
35. roots: norm,rotted,galls-cysts,?.
Relevant Papers:
Tan, M., & Eshelman, L. (1988). Using weighted networks to represent classification knowledge in noisy domains. Proceedings of the Fifth International Conference on Machine Learning (pp. 121-134). Ann Arbor, Michigan: Morgan Kaufmann.
[Web link]
Fisher,D.H. & Schlimmer,J.C. (1988). Concept Simplification and Predictive Accuracy. Proceedings of the Fifth International Conference on Machine Learning (pp. 22-28). Ann Arbor, Michigan: Morgan Kaufmann.
[Web link]
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。