Select Language

AI社区

公开数据集

机器人执行失败数据集

机器人执行失败数据集

56.2K
368 浏览
0 喜欢
0 次下载
0 条讨论
Physical Classification

Original Owner and Donor:Luis Seabra Lopes and Luis M. Camarinha-MatosUniversidade Nova de Lisboa, Monte da Caparica, Po......

数据结构 ? 56.2K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Original Owner and Donor:

    Luis Seabra Lopes and Luis M. Camarinha-Matos
    Universidade Nova de Lisboa,
    Monte da Caparica, Portugal


    Data Set Information:

    The donation includes 5 datasets, each of them defining a different learning problem:

       * LP1: failures in approach to grasp position
       * LP2: failures in transfer of a part
       * LP3: position of part after a transfer failure
       * LP4: failures in approach to ungrasp position
       * LP5: failures in motion with part

    In order to improve classification accuracy, a set of five feature transformation strategies (based on statistical summary features, discrete Fourier transform, etc.) was defined and evaluated. This enabled an average improvement of 20% in accuracy. The most accessible reference is [Seabra Lopes and Camarinha-Matos, 1998].


    Attribute Information:

    All features are numeric although they are integer valued only. Each feature represents a force or a torque measured after failure detection; each failure instance is characterized in terms of 15 force/torque samples collected at regular time intervals starting immediately after failure detection; The total observation window for each failure instance was of 315 ms.

    Each example is described as follows:

                    class
                    Fx1 Fy1 Fz1 Tx1 Ty1 Tz1
                    Fx2 Fy2 Fz2 Tx2 Ty2 Tz2
                    ......
                    Fx15 Fy15 Fz15 Tx15 Ty15 Tz15

    where Fx1 ... Fx15 is the evolution of force Fx in the observation window, the same for Fy, Fz and the torques; there is a total of 90 features.


    Relevant Papers:

    Seabra Lopes, L. (1997) "Robot Learning at the Task Level: a Study in the Assembly Domain", Ph.D. thesis, Universidade Nova de Lisboa, Portugal.
    [Web link]

    Seabra Lopes, L. and L.M. Camarinha-Matos (1998) Feature Transformation Strategies for a Robot Learning Problem, "Feature Extraction, Construction and Selection. A Data Mining Perspective", H. Liu and H. Motoda (edrs.), Kluwer Academic Publishers.
    [Web link]

    Camarinha-Matos, L.M., L. Seabra Lopes, and J. Barata (1996) Integration and Learning in Supervision of Flexible Assembly Systems, "IEEE Transactions on Robotics and Automation", 12 (2), 202-219.
    [Web link]



    Citation Request:

    Please refer to the Machine Learning Repository's citation policy

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:6 去赚积分?
    • 368浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享