Select Language

AI社区

公开数据集

OCR图像数据集,可用于OCR系统分类算法的基准测试

OCR图像数据集,可用于OCR系统分类算法的基准测试

76.7M
643 浏览
0 喜欢
2 次下载
0 条讨论
NLP Classification

Data Set Information:Data Type: GrayScale Image The image dataset can be used to benchmark classification algorithm for......

数据结构 ? 76.7M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    Data Type: GrayScale Image
    The image dataset can be used to benchmark classification algorithm for OCR systems. The highest accuracy obtained in the Test set is 98.47%. Model Description is available in the paper [Web link]
    More information on the dataset at [Web link].


    Attribute Information:

    Image Format: .png
    Resolution: 32 by 32
    Actual character is centered within 28 by 28 pixel, padding of 2 pixel is added on all four sides of actual character.


    Relevant Papers:

    S. Acharya, A.K. Pant and P.K. Gyawali a€?Deep Learning based Large Scale Handwritten Devanagari Character Recognitiona€?,In Proceedings of the 9th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), pp. 121-126, 2015.


    Citation Request:

    The material maybe used for free with the following paper cited,
    S. Acharya, A.K. Pant and P.K. Gyawali a€?Deep Learning based Large Scale Handwritten Devanagari Character Recognitiona€?,In Proceedings of the 9th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), pp. 121-126, 2015.


    The dataset was created by extraction and manual annotation of thousands of characters from handwritten documents.
    Creator Name: Shailesh Acharya, Email: sailes437 '@' gmail.com, Institution: University of North Texas, Cell: +19402200157
    Creator Name: Prashnna Kumar Gyawali, Email: gyawali.prasanna '@' gmail.com, Institution: Rochester Institute of Technology

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:12 去赚积分?
    • 643浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享