公开数据集
数据结构 ? 1.24M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
该数据集被用于几个与anuran物种识别挑战相关的分类任务中。它是一个包含三列标签的多标签数据集。这个数据集是通过分割60个音频记录创建的,这些音频记录属于4个不同的科、8个属和10个种。每个音频对应一个样本(单个青蛙),记录ID也包含在一个额外的列中。我们使用谱熵和二元聚类方法来检测属于每个音节的音频帧。在Matlab中进行了图像分割和特征提取。分割后得到7195个音节,作为训练和测试分类器的实例。这些记录是在真实噪声条件下(背景声)就地收集的。有些物种来自马瑙斯亚马逊大学的校园,还有马塔尔的其他大学。¢巴西恩蒂卡,其中一人来自阿根廷科尔多瓦。记录以wav格式存储,采样频率为44.1kHz,分辨率为32位,这使我们能够分析高达22kHz的信号。从每个提取的音节中,使用44个三角形滤波器计算22个MFCC。这些系数在-1 a‰mfcc a‰1之间标准化。每个类的实例数为:
Families:
Bufonidae 68
Dendrobatidae 542
Hylidae 2165
Leptodactylidae 4420
Genus:
Adenomera 4150
Ameerega 542
Dendropsophus 310
Hypsiboas 1593
Leptodactylus 270
Osteocephalus 114
Rhinella 68
Scinax 148
Species:
AdenomeraAndre 672
AdenomeraHylaedacta€| 3478
Ameeregatrivittata 542
HylaMinuta 310
HypsiboasCinerascens 472
HypsiboasCordobae 1121
LeptodactylusFuscus 270
OsteocephalusOophaa€| 114
Rhinellagranulosa 68
ScinaxRuber 148
Attribute Information:
Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an mel-frequency cepstrum (MFC). Due to each syllable has different length, every row (i) was normalized acording to MFCCs_i/(max(abs(MFCCs_i))).
Relevant Papers:
1) colonNA, J. G.; CRISTO, M.; SALVATIERRA, M.; NAKAMURA, E. F.
An Incremental Technique for Real-Time Bioacoustic Signal Segmentation.
Expert Systems with Applications, v. 42, p. 7367-7374, 2015.
2) colonNA, J. G.; GAMA, J.; NAKAMURA, E. F.
How to Correctly evaluate an Automatic Bioacoustics Classification Method.
In: 17th Conference of the Spanish Association for Artificial Intelligence (CAEPIA).
Lecture Notes in Computer Science. 986ed.: Springer International Publishing, 2016, v. , p. 37-47.
3) colonNA, J. G.; GAMA, J.; NAKAMURA, E. F.
Recognizing Family, Genus, and Species of Anuran Using a Hierarchical Classification Approach.
Lecture Notes in Computer Science. 995ed.: Springer International Publishing, 2016, v. 9956, p. 198-212.
4) colonNA, J. G.; RIBAS, A. D.; SANTOS, E. M.; NAKAMURA, E. F.
Feature Subset Selection for Automatically Classifying Anuran Calls Using Sensor Networks.
In: International Joint Conference on Neural Networks, 2012, Brisbane.
Proceedings of the International Joint Conference on Neural Networks (IJCNN 2012), 2012. p. 1-8. IEEE
5) colonNA, J. G.; PEET, T.; FERREIRA, C. A.; JORGE, A. M.; GOMES, E. F.; GAMA, J. (2016, July).
Automatic Classification of Anuran Sounds Using Convolutional Neural Networks.
In Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering (No. C3S2E '16, pp. 73-78). ACM.
6) colonNA, J. G.; CRISTO, M.; NAKAMURA, E. F. (2014, August).
A Distributed Approach for Classifying Anuran Species based on Their Calls.
In Pattern Recognition (ICPR), 2014 22nd International Conference on (pp. 1242-1247). IEEE.
7) RIBAS, A. D.; colonNA, J. G.; FIGUEIREDO, C. M. S.; NAKAMURA, E. F.
Similarity clustering for data fusion in wireless sensor networks using k-means
The 2012 International Joint Conference on Neural Networks (IJCNN 2012), p. 1-7. IEEE
8) DIAZ, J. M.; colonNA, J. G.; SOARES, R. B.; FIGUEREIDO, C. M. S.; NAKAMURA, E. F.
Compressive sensing for efficiently collecting wildlife sounds with wireless sensor networks
21st International Conference on Computer Communications and Networks (ICCCN 2012), p. 1-7. IEEE
Citation Request:
Please refer to the Machine Learning Repository's citation policy
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。