Select Language

公开数据集

3D物体检测评估 包含7481个训练图像和7518个测试图像以及相应的点云

3D物体检测评估 包含7481个训练图像和7518个测试图像以及相应的点云

Scene:

Vehicle,Autonomous Driving

Data Type:

3D Box
所需积分:105 去赚积分?
  • 99浏览
  • 0下载
  • 1点赞
  • 收藏
  • 分享

贡献者查看主页

小小程序员

致力于人工智能业务的研究、数据集处理。

Data Preview ? 118G

    3D对象检测基准由7481个训练图像和7518个测试图像以及相应的点云组成,包括总共80.256个标记对象。为了评估,我们计算精度召回曲线。为了对这些方法进行排序,我们计算平均精度。我们要求所有方法对所有测试对使用相同的参数集。

    我们使用同样用于2D对象检测的PASCAL标准来评估3D对象检测性能。因此,将根据图像平面中的边界框高度对远对象进行过滤。由于只有同样出现在图像平面上的对象才被标记,所以非汽车区域中的对象不算作误报。我们注意到,评估没有考虑忽略图像平面上不可见的检测——这些检测可能会导致误报。对于汽车,我们需要70%的3D边界框重叠,而对于行人和骑车人,我们需要50%的3D边界盒重叠。困难定义如下:
    简单:最小边界框高度:40 Px,最大遮挡级别:完全可见,最大截断:15%
    中等:最小边界框高度:25 Px,最大遮挡级别:部分遮挡,最大截断:30%
    硬:最小边界框高度:25 Px,最大遮挡级别:难以看到,最大截断:50%
    所有方法都基于中等难度的结果进行排名。

    Citation

    When using this dataset in your research, we will be happy if you cite us:
    @INPROCEEDINGS{Geiger2012CVPR,
      author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
      title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
      booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2012}
    }


    0相关评论