公开数据集
数据结构 ? 6.6G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Although RGB-D sensors have enabled major breakthroughs for several vision tasks, such as 3D reconstruction, we haven not achieved a similar performance jump for high-level scene understanding. Perhaps one of the main reasons for this is the lack of a benchmark of reasonable size with 3D annotations for training and 3D metrics for evaluation. In this paper, we present an RGB-D benchmark suite for the goal of advancing the state-of-the-art in all major scene understanding tasks. Our dataset is captured by four different sensors and contains 10,000 RGB-D images, at a similar scale as PASCAL VOC. The whole dataset is densely annotated and includes 146,617 2D polygons and 58,657 3D bounding boxes with accurate object orientations, as well as a 3D room layout and category for scenes. This dataset enables us to train data-hungry algorithms for scene-understanding tasks, evaluate them using direct and meaningful 3D metrics, avoid overfitting to a small testing set, and study cross-sensor bias.
News
SUNRGB-D 3D Object Detection Challenge (2017): data and delevopment toolkit is now available here .
Paper
S. Song, S. Lichtenberg, and J. Xiao.
SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite
Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2015)
Oral Presentation
Data and Annotation
SUNRGBD V1 : This file contains the 10335 RGBD images of SUNRGBD V1.
- The dataset contains RGB-D images from NYU depth v2 [1], Berkeley B3DO
[2], and SUN3D [3]. Besides this paper, you are required to also cite
the following papers if you use this dataset.
[1] N. Silberman, D. Hoiem, P. Kohli, R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
[2] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. A category-level 3-d object dataset: Putting the kinect to work. In ICCV Workshop on Consumer Depth Cameras for Computer Vision, 2011.
[3] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database of big spaces reconstructed using SfM and object labels. In ICCV, 2013
SUNRGBDtoolbox : This file contains annotation and Matlab code to load and visualize the data. Here is the README.txt
Updates
Details about updates see:
UPDATE.txt
SUNRGBDmeta2DBB_v2.mat : Updated 2D bounding box.
SUNRGBDmeta3DBB_v2.mat : Updated 3D bounding box.
evaluation
detection.zip (15.1 MB)
holisticScene.zip (269 KB)
roomlayout.zip (274 KB) (contains code for "Manhattan Box" and "Convex Hull" methods.)
Feature
deep_features.mat (230.1 MB): Places-CNN [4] features on depth and color images.
Presentation
|
Other Materials
supp.pdf: This file contains more results and detials about our annotation tool.
Acknowledgement
This work is supported by gift funds from Intel Corporation. We thank Thomas Funkhouser, Jitendra Malik, Alexi A. Efros and Szymon Rusinkiewicz for valuable discussion. We also thank Linguang Zhang, Fisher Yu, Yinda Zhang, Luna Song, Pingmei Xu and Guoxuan Zhang for capturing and labeling.
Reference
[4] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva Learning Deep Features for Scene Recognition using Places Database Advances in Neural Information Processing Systems 27 (NIPS2014)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。