Select Language

公开数据集

QSAR dataset 雄激素受体数据集

QSAR dataset 雄激素受体数据集

Scene:

Physical

Data Type:

Classification
所需积分:5 去赚积分?
  • 269浏览
  • 0下载
  • 0点赞
  • 收藏
  • 分享

Data Preview ? 170K

    Data Structure ?

    *数据结构实际以真实数据为准

    Francesca Grisoni (francesca.grisoni '@' unimib.it), Davide Ballabio (davide.ballabio '@' unimib.it), Viviana Consonni, Milano Chemometrics and QSAR Research Group (http://www.michem.unimib.it/), Universit?? degli Studi Milano - Bicocca, Milano (Italy)


    Data Set Information:

    This dataset was used to develop classification QSAR models for the discrimination of binder/positive (199) and non-binder/negative (1488) molecules by means of different machine learning methods. Details can be found in the quoted reference: F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794.
    Attributes (molecular fingerprints) were calculated at the Milano Chemometrics and QSAR Research Group (Universit??  degli Studi Milano - Bicocca, Milano, Italy) on a set of chemicals provided by the National Center of Computational Toxicology, at the U.S. Environmental Protection Agency in the framework of the  CoMPARA collaborative modelling project, which targeted the development of QSAR models to identify binders to the Androgen Receptor.


    Attribute Information:

    1024 binary molecular fingerprints and 1 experimental class:
    1-1024) binary molecular fingerprint
    1025) experimental class: positive (binder) and negative (non-binder)


    Relevant Papers:

    F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794



    Citation Request:

    Please, cite the following paper if you publish results based on the QSAR androgen receptor dataset: F. Grisoni, V. Consonni, D. Ballabio, (2019) Machine Learning Consensus to Predict the Binding to the Androgen Receptor within the CoMPARA project, Journal of chemical information and modeling, 59, 1839-1848; doi: 10.1021/acs.jcim.8b00794

    0相关评论
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。