公开数据集
数据结构 ? 4.84M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
此数据集用于测试时间序列数据库中的索引方案。这是一个比任何已发表研究(我们目前所知)中使用的数据集大得多的数据集。它包含一百万个数据点。数据被分成10个部分,以便于测试(见下文)。我们建议使用100000个数据点部分中的9个建立索引,并从第10个部分中随机抽取一个查询形状。(以前发表的一些工作似乎使用了同样用于构建索引结构的查询。这将产生乐观的结果)这些数据很有趣,因为它们在不同的分辨率下具有不同的结构。通过函数的独立调用生成的10个部分中的每一部分:(参见equation.gif)
其中rand(x)生成一个介于0和x之间的随机整数。
数据呈现出高度的周期性,但从不完全重复自身。此功能旨在挑战索引结构。时间序列在这里绘制:(ts1-5.gif),(ts6-10.gif)
Attribute Information:
The data is stored in one ASCII file. There are 10 columns, 100,000 rows. All data points are in the range -0.5 to +0.5.
Rows are separated by carriage returns, columns by spaces.
Relevant Papers:
Eamonn J. Keogh, Michael J. Pazzani: (1999). An indexing scheme for similarity search in large time series databases. The 11th International Conference on Scientific and Statistical Database Management. Cleveland, Ohio.
[Web link]
Sanghyun Park, Dongwon Lee, and Wesley W. Chu. "Fast Retrieval of Similar Subsequences in Long Sequence Databases", In 3rd IEEE Knowledge and Data Engineering Exchange Workshop (KDEX), Chicago, IL, USA, November, 1999
[Web link]
Citation Request:
Freely available for research use.
Eamonn J. Keogh and Michael J. Pazzani
Department of Information and Computer Science
University of California, Irvine, California 92697 USA
eamonn '@' ics.uci.edu, pazzani '@' ics.uci.edu
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。