公开数据集

100种植物叶片数据集
Scene:
LifeData Type:
Classification
Data Preview ?
35.1M
Data Structure ?
*数据结构实际以真实数据为准
Data Set Information:
For Each feature, a 64 element vector is given per sample of leaf. These vectors are taken as a contigous descriptors (for shape) or histograms (for texture and margin).
Attribute Information:
For Each feature, a 64 element vector is given per sample of leaf. One file for each 64-element feature vectors. Each row begins with the class label. The remaining 64 elements is the feature vector.
Relevant Papers:
This is a new data set, provisional paper: 'Plant Leaf Classification Using
Probabilistic Integration of Shape, Texture and Margin Features' at SPPRA 2013. Authors:
Charles Mallah, James Cope, and James Orwell or Kingston University London.
Previous parts of the data set relate to feature extraction of leaves from:
J. Cope, P. Remagnino, S. Barman, and P. Wilkin.
Plant texture classification using gabor cooccurrences.
Advances in Visual Computing,
pages 669a€“677, 2010.
T. Beghin, J. Cope, P. Remagnino, and S. Barman.
Shape and texture based plant leaf classification. In
Advanced Concepts for Intelligent Vision Systems,
pages 345a€“353. Springer, 2010.
Citation Request:
Charles Mallah, James Cope, James Orwell. Plant Leaf Classification Using Probabilistic Integration of Shape, Texture and Margin Features. Signal Processing, Pattern Recognition and Applications, in press. 2013.
James Cope, Thibaut Beghin, Paolo Remagnino, Sarah Barman.
The colour images are not included in this submission.
The Leaves were collected in the Royal Botanic Gardens, Kew, UK.
email: james.cope '@' kingston.ac.uk
This dataset consists of work carried out by James Cope, Charles Mallah, and James Orwell. Kingston University London.
Donor of database Charles Mallah: charles.mallah '@' kingston.ac.uk; James Cope: james.cope '@' kingston.ac.uk
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。