公开数据集
数据结构 ? 80.8M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Filippo Galgani
galganif '@' cse.unsw.edu.au
School of Computer Science and Engineering
The Univeristy of New South Wales, Australia
Data Set Information:
This dataset contains Australian legal cases from the Federal Court of Australia (FCA). The cases were downloaded from AustLII ([Web link]). We included all cases from the year 2006,2007,2008 and 2009. We built it to experiment with automatic summarization and citation analysis. For each document we collected catchphrases, citations sentences, citation catchphrases, and citation classes. Catchphrases are found in the document, we used the catchphrases are gold standard for our summarization experiments. Citation sentences are found in later cases that cite the present case, we use citation sentences for summarization. Citation catchphrases are the catchphrases (where available) of both later cases that cite the present case, and older cases cited by the present case. Citation classes are indicated in the document, and indicate the type of treatment given to the cases cited by the present case.
Attribute Information:
Provide information about each attribute in your data set.
Relevant Papers:
[1] F. Galgani, P. Compton, and A. Hoffmann. Citation based summarisation of legal texts. In PRICAI 2012, volume LNCS 7458, pages 40a€“52. Springer, Heidelberg, 2012.
[2] F. Galgani, P. Compton, and A. Hoffmann. Combining different summarization techniques for legal text. In Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data, pages 115a€“123, Avignon, France, April 2012. Association for Computational Linguistics.
[3] F. Galgani, P. Compton, and A. Hoffmann. Knowledge acquisition for categorization of legal case re- ports. In D. Richards and B. Kang, editors, PKAW 2012, volume LNAI 7457, pages 118a€“132. Springer, Heidelberg, 2012.
[4] F. Galgani, P. Compton, and A. Hoffmann. Towards automatic generation of catchphrases for legal case reports. In the 13th International Conference on Intelligent Text Processing and Computational Linguistics, volume 7182 of Lecture Notes in Computer Science, pages 415a€“426, New Delhi, India, 2012. Springer Berlin Heidelberg.
[5] F. Galgani and A. Hoffmann. Lexa: Towards automatic legal citation classification. In J. Li, editor, AI 2010: Advances in Artificial Intelligence, volume 6464 of Lecture Notes in Computer Science, pages 445 a€“454. Springer Berlin Heidelberg, 2010.
Citation Request:
[1] F. Galgani, P. Compton, and A. Hoffmann. Citation based summarisation of legal texts. In PRICAI 2012, volume LNCS 7458, pages 40a€“52. Springer, Heidelberg, 2012.
[2] F. Galgani, P. Compton, and A. Hoffmann. Combining different summarization techniques for legal text. In Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data, pages 115a€“123, Avignon, France, April 2012. Association for Computational Linguistics.
[3] F. Galgani, P. Compton, and A. Hoffmann. Knowledge acquisition for categorization of legal case re- ports. In D. Richards and B. Kang, editors, PKAW 2012, volume LNAI 7457, pages 118a€“132. Springer, Heidelberg, 2012.
[4] F. Galgani, P. Compton, and A. Hoffmann. Towards automatic generation of catchphrases for legal case reports. In the 13th International Conference on Intelligent Text Processing and Computational Linguistics, volume 7182 of Lecture Notes in Computer Science, pages 415a€“426, New Delhi, India, 2012. Springer Berlin Heidelberg.
[5] F. Galgani and A. Hoffmann. Lexa: Towards automatic legal citation classification. In J. Li, editor, AI 2010: Advances in Artificial Intelligence, volume 6464 of Lecture Notes in Computer Science, pages 445 a€“454. Springer Berlin Heidelberg, 2010.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。