Select Language

AI社区

公开数据集

Daphnet冻结步态数据集,腿部和臀部的可穿戴加速度传感器识别步态冻结

Daphnet冻结步态数据集,腿部和臀部的可穿戴加速度传感器识别步态冻结

20.5M
691 浏览
0 喜欢
1 次下载
0 条讨论
Business Classification

Data Set Information:The Daphnet Freezing of Gait Dataset is a dataset devised to benchmark automatic methods to recogni......

数据结构 ? 20.5M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:


    The Daphnet Freezing of Gait Dataset is a dataset devised to benchmark automatic methods to recognize gait freeze from wearable acceleration sensors placed on legs and hip.

    The dataset was recorded in the lab with emphasis on generating many freeze events. Users performed there kinds of tasks: straight line walking, walking with numerous turns, and finally a more realistic activity of daily living (ADL) task, where users went into different rooms while fetching coffee, opening doors, etc.

    This dataset is the result of a collaboration between the Laboratory for Gait and Neurodynamics, Tel Aviv Sourasky Medical Center, Israel and the Wearable Computing Laboratory, ETH Zurich, Switzerland. Recordings were run at the Tel Aviv Sourasky Medical Center in 2008. The study was approved by the local Human Subjects Review Committee, and was performed in accordance with the ethical standards of the Declaration of Helsinki.


    Attribute Information:


    Each file comprises the data in a matrix format, with one line per sample, and one column per channel. The channels are as follows:
       Time of sample in millisecond
       Ankle (shank) acceleration - horizontal forward acceleration [mg]
       Ankle (shank) acceleration - vertical [mg]
       Ankle (shank) acceleration - horizontal lateral [mg]
       Upper leg (thigh) acceleration - horizontal forward acceleration [mg]
       Upper leg (thigh) acceleration - vertical [mg]
       Upper leg (thigh) acceleration - horizontal lateral [mg]
       Trunk acceleration - horizontal forward acceleration [mg]
       Trunk acceleration - vertical [mg]
       Trunk acceleration - horizontal lateral [mg]
       Annotation [0, 1, or 2]

    The meaning of the annotations are as follows:
       0: not part of the experiment. For instance the sensors are installed on the user or the user is performing activities unrelated to the experimental protocol, such as debriefing
       1: experiment, no freeze (can be any of stand, walk, turn)
       2: freeze


    Relevant Papers:


    [1] Marc B?¤chlin, Meir Plotnik, Daniel Roggen, Nir Giladi, Jeffrey M Hausdorff and Gerhard Tr??ster, A Wearable System to Assist Walking of Parkinson's Disease Patients.Methods of Information in Medicine, 49:1(88-95), 2010
    [2] Meir Plotnik, Marc B?¤chlin, Inbal Maidan, Daniel Roggen, Gerhard Tr??ster, Nir Giladi and Jeffrey M Hausdorff, Automated biofeedback assistance for freezing of gait in patients with Parkinson's disease. Proceedings of the International Society for Posture and Gait Research (ISPGR), Bologna, Italy, 2009
    [3] Meir Plotnik, Marc B?¤chlin, Daniel Roggen, Noit Inbar, Inbal Maidan, Talia Herman, Marina Brozgol, Eliya Shaviv, Gerhard Tr??ster and Jeffrey M Hausdorff, Automated treatment of freezing of gait in Parkinson's disease using a wearable device that automatically detects freezing. Annual meeting of the Israeli Neurological Society, Israel, pages 63, 2009
    [4] Marc B?¤chlin, Daniel Roggen, Meir Plotnik, Jeffrey M Hausdorff, Nir Giladi and Gerhard Tr??ster, online Detection of Freezing of Gait in Parkinson's Disease Patients: A Performance Characterization. Proceedings of the 4th International Conference on Body Area Networks, 2009
    [5] Marc B?¤chlin, Meir Plotnik, Daniel Roggen, Noit Inbar, Nir Giladi, Jeffrey M Hausdorff and Gerhard Tr??ster. Parkinson patients' perspective on context aware wearable technology for auditive assistance. Proceedings of the 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009
    [6] Marc B?¤chlin, Daniel Roggen, Meir Plotnik, Noit Inbar, Inbal Maidan, Talia Herman, Marina Brozgol, Eliya Shaviv, Nir Giladi, Jeffrey M Hausdorff and Gerhard Tr??ster,
    Potentials of enhanced context awareness in wearable assistants for Parkinsona€?s disease patients with freezing of gait syndrome. Proceedings of the 13th International Symposium on Wearable Computers (ISWC), pages 123-130, 2009
    [7] Sinziana Mazilu, Michael Hardegger, Zack Zhu, Daniel Roggen, Gerhard Tr??ster, Meir Plotnik, Jeff Hausdorff. online Detection of Freezing of Gait with Smartphones and Machine Learning Techniques. Proc 6th Int Conf on Pervasive Computing Technologies for Healthcare, 2012


    Citation Request:


    Use of this dataset in publications must be acknowledged by referencing the following publication:

    Marc B?¤chlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M. Hausdorff, Nir Giladi, and Gerhard Tr??ster, Wearable Assistant for Parkinson's Disease Patients With the Freezing of Gait Symptom. IEEE Transactions on Information Technology in Biomedicine, 14(2), March 2010, pages 436-446

    This paper describes the dataset in details. It explain the data acquisition protocol, the kind of sensor used and their placement, and the nature of the data acquired. It also provides baseline results for the automated detection of freezing of gait, against which newer methods can be benchmarked. In particular it describes detection sensitivity/specificity for 3 sensor placements and 4 kinds of derived sensor signals, it analyzes detection latency, and provides first insight into user specific v.s. user independent performance.

    We also appreciate if you inform us (daniel.roggen '@' ieee.org) of any publication using this dataset for cross-referencing purposes.



    Daniel Roggen, University of Newcastle Upon Tyne, UK, daniel.roggen '@' ieee.org
    Meir Plotnik,  Sheba Medical Center, IL, meir.plotnikPeleg '@' sheba.health.gov.il
    Jeff Hausdorff, Tel Aviv Sourasky Medical Center, jhausdor '@' tlvmc.gov.il

    This dataset was collected as part of the EU FP6 project Daphnet, grant number 018474-2.
    Additional effort to publish this dataset was supported in part by the EU FP7 project CuPiD, grant number 288516.

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 691浏览
    • 1下载
    • 0点赞
    • 收藏
    • 分享