Select Language






Data Type:

所需积分:15 去赚积分?
  • 312浏览
  • 1下载
  • 0点赞
  • 收藏
  • 分享

Data Preview ? 4K

    Data Structure ?


    Data Set Information:

    The estimated relative performance values were estimated by the authors using a linear regression method.  See their article (pp 308-313) for more details on how the relative performance values were set.

    Attribute Information:

    1. vendor name: 30
         (adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec,
          dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson,
          microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry,
          sratus, wang)
      2. Model Name: many unique symbols
      3. MYCT: machine cycle time in nanoseconds (integer)
      4. MMIN: minimum main memory in kilobytes (integer)
      5. MMAX: maximum main memory in kilobytes (integer)
      6. CACH: cache memory in kilobytes (integer)
      7. CHMIN: minimum channels in units (integer)
      8. CHMAX: maximum channels in units (integer)
      9. PRP: published relative performance (integer)
     10. ERP: estimated relative performance from the original article (integer)

    Relevant Papers:

    Ein-Dor and Feldmesser (CACM 4/87, pp 308-317)

    Kibler,D. & Aha,D. (1988).  Instance-based Prediction of Real-Valued Attributes.  In Proceedings of the CSCSI (Canadian AI) Conference.
    [Web link]

    Papers That Cite This Data Set1:

    Dan Pelleg. Scalable and Practical Probability Density Estimators for Scientific Anomaly Detection. School of Computer Science Carnegie Mellon University. 2004.  [View Context].

    Yongge Wang. A New Approach to Fitting Linear Models in High Dimensional Spaces. Alastair Scott (Department of Statistics, University of Auckland).  [View Context].

    Citation Request:

    Please refer to the Machine Learning Repository's citation policy


    Phillip Ein-Dor and Jacob Feldmesser
    Ein-Dor: Faculty of Management
    Tel Aviv University; Ramat-Aviv;
    Tel Aviv, 69978; Israel


    David W. Aha (aha '@' (714) 856-8779