公开数据集
数据结构 ? 1.7G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
1、ML-Images数据集的全部图像URLs,以及相应的类别标注。出于原始图像版权的考虑,此次开源将不直接提供原始图像,用户可利用我们提供的下载代码和URLs自行下载图像。
2、ML-Images数据集的详细介绍,包括图像来源,图像数量,类别数量,类别的语义标签体系,标注方法,以及图像的标注数量等统计量。
3、完整的代码和模型。我们提供的代码涵盖从图像下载,图像预处理,基于ML-Images的预训练,基于ImageNet的迁移学习,到基于训练所得模型的图像特征提取的完整流程。该项目提供了基于小数据集的训练示例,以方便用户快速体验我们的训练流程。该项目还提供了非常高精度的ResNet-101模型(在单标签基准数据集ImageNet的验证集上的top-1精度为80.73%)。用户可根据自身需求,随意选用该项目的代码或模型。
该项目的开源,是腾讯AI Lab在计算机视觉领域所累积的基础能力的一次释放,为人工智能领域的科研人员和工程师提供了充足的高质量训练数据,及简单易用、性能强大的深度学习模型,为包括图像、视频等在内的视觉任务提供强大支撑,并助力图像分类、物体检测、物体跟踪、语义分割等技术水平的提升,促进人工智能行业共同发展。
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。