公开数据集
数据结构 ? 3.91G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
SVHN是一个用于开发机器学习和对象识别算法的真实图像数据集,对数据预处理和格式化的要求最低。它可以被视为与MNIST在风格上相似(例如,图像是小的裁剪数字),但包含了一个数量级以上的标记数据(超过600000个数字的图像),并且来自一个更难、未解决的现实世界问题(识别自然场景图像中的数字和数字)。SVHN是从谷歌街景图片中的门牌号中获取的。
10 classes, 1 for each digit. Digit '1' has label 1, '9' has label 9 and '0' has label 10.
73257 digits for training, 26032 digits for testing, and 531131 additional, somewhat less difficult samples, to use as extra training data
Comes in two formats:
1. Original images with character level bounding boxes.
2. MNIST-like 32-by-32 images centered around a single character (many of the images do contain some distractors at the sides).
Technical Details
Format 1: Full Numbers
These are the original, variable-resolution, color house-number images with character level bounding boxes, as shown in the examples images above. (The blue bounding boxes in the example image are just for illustration purposes. The bounding box information are stored in digitStruct.mat instead of drawn directly on the images in the dataset.)
Each tar.gz file contains the orignal images in png format, together with a digitStruct.mat file, which can be loaded using Matlab. The digitStruct.mat file contains a struct called digitStruct with the same length as the number of original images. Each element in digitStruct has the following fields: name which is a string containing the filename of the corresponding image. bbox which is a struct array that contains the position, size and label of each digit bounding box in the image.
Eg: digitStruct(300).bbox(2).height gives height of the 2nd digit bounding box in the 300th image.
Format 2: Cropped Digits
Character level ground truth in an MNIST-like format. All digits have been resized to a fixed resolution of 32-by-32 pixels. The original character bounding boxes are extended in the appropriate dimension to become square windows, so that resizing them to 32-by-32 pixels does not introduce aspect ratio distortions. Nevertheless this preprocessing introduces some distracting digits to the sides of the digit of interest. Loading the .mat files creates 2 variables: X which is a 4-D matrix containing the images, and y which is a vector of class labels.
To access the images, X(:,:,:,i) gives the i-th 32-by-32 RGB image, with class label y(i).
References
Please cite the following reference in papers using this dataset:
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng Reading Digits in Natural Images with Unsupervised Feature Learning NIPS Workshop on Deep Learning and Unsupervised Feature Learning 201 (PDF)
Submitted Files
Disclaimer
This dataset is provided for non-commercial use only.
By downloading and using the dataset you agree to acknowledge it's source and cite the above papers in related publications. Please link to the authors' URL for this dataset as http://ufldl.stanford.edu/housenumbers.
Contact Author
For questions regarding the dataset, please contact streetviewhousenumbers@gmail.com
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。