Select Language

公开数据集

萨默维尔幸福调查数据集

萨默维尔幸福调查数据集

Scene:

Life

Data Type:

Classification
所需积分:3 去赚积分?
  • 305浏览
  • 0下载
  • 0点赞
  • 收藏
  • 分享

Data Preview ? 4.2K

    Data Structure ?

    *数据结构实际以真实数据为准

    Waldemar W. Koczkodaj, wkoczkodaj@gmail, independent researcher.


    Data Set Information:

    It is a case of supervised learning with the use of Receiver Operating Characteristic (ROC) to select the minimal set of attributes preserving or increasing predictability of the data.


    Attribute Information:

    D = decision attribute (D) with values 0 (unhappy) and 1 (happy)
    X1 = the availability of information about the city services
    X2 = the cost of housing
    X3 = the overall quality of public schools
    X4 = your trust in the local police
    X5 = the maintenance of streets and sidewalks
    X6 = the availability of social community events

    Attributes X1 to X6 have values 1 to 5.


    Relevant Papers:

    Koczkodaj, W.W.; Li, F.; Wolny-Dominiak, A., RatingScaleReduction package: stepwise rating scale item reduction without predictability loss, R JOURNAL, 10(1): 43-55, 2018.

    W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 111(2): 581-593, 2017.

    Project R package: [Web link]



    Citation Request:

    For the method:
    W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 111(2): 581-593, 2017.

    0相关评论
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。