公开数据集
数据结构 ? 13.7K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-Asthma-Infected-HC) collected in the frame of a joint research project, Exasens ([Web link]), at the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany). The sampling procedure of the patient materials was approved by the local ethics committee of the University of Luebeck under the approval number AZ-16-167 and a written informed consent was obtained from all subjects. A permittivity biosensor, developed at IHP Microelectronics (Frankfurt Oder, Germany), was used for the dielectric characterization of the saliva samples for classification purposes ([Web link]).
Definition of 4 sample groups included within the Exasens dataset:
(I) Outpatients and hospitalized patients with COPD without acute respiratory infection (COPD).
(II) Outpatients and hospitalized patients with asthma without acute respiratory infections (Asthma).
(III) Patients with respiratory infections, but without COPD or asthma (Infected).
(IV) Healthy controls without COPD, asthma, or any respiratory infection (HC).
Attribute Information:
1- Diagnosis (COPD-HC-Asthma-Infected)
2- ID
3- Age
4- Gender (1=male, 0=female)
5- Smoking Status (1=Non-smoker, 2=Ex-smoker, 3=Active-smoker)
6- Saliva Permittivity:
a) Imaginary part (Min(?”)=Absolute minimum value, Avg.(?”)=Average)
b) Real part (Min(?”)=Absolute minimum value, Avg.(?”)=Average)
Relevant Papers:
P. S. Zarrin, N. Roeckendorf, and C. Wenger. In-vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Non-perceptron Machine Learning Tools. Annals of biomedical engineering, 2020.
Soltani Zarrin, P.; Ibne Jamal, F.; Roeckendorf, N.; Wenger, C. Development of a Portable Dielectric Biosensor for Rapid Detection of Viscosity Variations and Its In Vitro evaluations Using Saliva Samples of COPD Patients and Healthy Control. Healthcare 2019, 7, 11.
Soltani Zarrin, P.; Jamal, F.I.; Guha, S.; Wessel, J.; Kissinger, D.; Wenger, C. Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD. Biosensors 2018, 8, 78.
P.S. Zarrin and C. Wenger. Pattern Recognition for COPD Diagnostics Using an Artificial Neural Network and Its Potential Integration on Hardware-based Neuromorphic Platforms. Springer Lecture Notes in Computer Science (LNCS), Vol. 11731, pp. 284-288, 2019.
Krause, T., Ramaker, K., R??ckendorf, N., Sinnecker, H. and Frey, A., 2016. Airway mucinsa€“suitable biomarkers to predict an upcoming exacerbation in COPD and asthma?. Pneumologie, 70(07), p.P43.
Citation Request:
The authors acknowledge the Federal Ministry for Education and Research (BMBF) of Germany for funding this work. The authors thank the BioMaterialBank Nord (BMB Nord), popgen 2.0 network (P2N), and the German Center for Lung Research for the collection of saliva samples and the staff at IHP and FZ Borstel-Leibniz Lung Center for their precious support with this work. In case of using the introduced Exasens dataset please cite the following papers:
P. S. Zarrin, N. Roeckendorf, and C. Wenger. In-vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Non-perceptron Machine Learning Tools. Annals of biomedical engineering, 2020.
Pouya Soltani Zarrin, soltani '@' ihp-microelectronics.com, IHPa€“Leibniz-institute for innovative microelectronics, 15236 Frankfurt (Oder), Germany
Niels
Roeckendorf, Research Center Borstela€“Leibniz Lung Center, Priority
Area Asthma & Allergy, Division of Mucosal Immunology &
Diagnostics, Member of Leibniz Health Technologies and German Center for
Lung Research, 23845 Borstel, Germany
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。