Select Language

AI社区

公开数据集

Exasens数据集,包括在Exasens内的4组唾液样本(COPD哮喘感染HC)的人口统计数据

Exasens数据集,包括在Exasens内的4组唾液样本(COPD哮喘感染HC)的人口统计数据

13.7K
515 浏览
0 喜欢
3 次下载
0 条讨论
Medical Classification

Data Set Information:The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-Asthma-Inf......

数据结构 ? 13.7K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-Asthma-Infected-HC) collected in the frame of a joint research project, Exasens ([Web link]), at the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany). The sampling procedure of the patient materials was approved by the local ethics committee of the University of Luebeck under the approval number AZ-16-167 and a written informed consent was obtained from all subjects. A permittivity biosensor, developed at IHP Microelectronics (Frankfurt Oder, Germany), was used for the dielectric characterization of the saliva samples for classification purposes ([Web link]).

    Definition of 4 sample groups included within the Exasens dataset:

    (I) Outpatients and hospitalized patients with COPD without acute respiratory infection (COPD).

    (II) Outpatients and hospitalized patients with asthma without acute respiratory infections (Asthma).

    (III) Patients with respiratory infections, but without COPD or asthma (Infected).

    (IV) Healthy controls without COPD, asthma, or any respiratory infection (HC).


    Attribute Information:

    1- Diagnosis (COPD-HC-Asthma-Infected)

    2- ID

    3- Age

    4- Gender (1=male, 0=female)

    5- Smoking Status (1=Non-smoker, 2=Ex-smoker, 3=Active-smoker)

    6- Saliva Permittivity:

    a) Imaginary part (Min(?”)=Absolute minimum value, Avg.(?”)=Average)  

    b) Real part (Min(?”)=Absolute minimum value, Avg.(?”)=Average)


    Relevant Papers:

    P. S. Zarrin, N. Roeckendorf, and C. Wenger. In-vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Non-perceptron Machine Learning Tools. Annals of biomedical engineering, 2020.

    Soltani Zarrin, P.; Ibne Jamal, F.; Roeckendorf, N.; Wenger, C. Development of a Portable Dielectric Biosensor for Rapid Detection of Viscosity Variations and Its In Vitro evaluations Using Saliva Samples of COPD Patients and Healthy Control. Healthcare 2019, 7, 11.

    Soltani Zarrin, P.; Jamal, F.I.; Guha, S.; Wessel, J.; Kissinger, D.; Wenger, C. Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD. Biosensors 2018, 8, 78.

    P.S. Zarrin and C. Wenger. Pattern Recognition for COPD Diagnostics Using an Artificial Neural Network and Its Potential Integration on Hardware-based Neuromorphic Platforms. Springer Lecture Notes in Computer Science (LNCS), Vol. 11731, pp. 284-288, 2019.

    Krause, T., Ramaker, K., R??ckendorf, N., Sinnecker, H. and Frey, A., 2016. Airway mucinsa€“suitable biomarkers to predict an upcoming exacerbation in COPD and asthma?. Pneumologie, 70(07), p.P43.


    Citation Request:

    The authors acknowledge the Federal Ministry for Education and Research (BMBF) of Germany for funding this work. The authors thank the BioMaterialBank Nord (BMB Nord), popgen 2.0 network (P2N), and the German Center for Lung Research for the collection of saliva samples and the staff at IHP and FZ Borstel-Leibniz Lung Center for their precious support with this work. In case of using the introduced Exasens dataset please cite the following papers:

    P. S. Zarrin, N. Roeckendorf, and C. Wenger. In-vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Non-perceptron Machine Learning Tools. Annals of biomedical engineering, 2020.


    Pouya Soltani Zarrin, soltani '@' ihp-microelectronics.com, IHPa€“Leibniz-institute for innovative microelectronics, 15236 Frankfurt (Oder), Germany
    Niels Roeckendorf, Research Center Borstela€“Leibniz Lung Center, Priority Area Asthma & Allergy, Division of Mucosal Immunology & Diagnostics, Member of Leibniz Health Technologies and German Center for Lung Research, 23845 Borstel, Germany

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 515浏览
    • 3下载
    • 0点赞
    • 收藏
    • 分享