Select Language





287 浏览
0 喜欢
2 次下载
0 条讨论
Physical Classification

Data Set Information:The analysis is performed for different sets of input values using the methodology similar to that......

数据结构 ? 2.3M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    Data Set Information:

    The analysis is performed for different sets of input values using the methodology similar to that described in [Sch?¤fer, Benjamin, et al. 'Taming instabilities in power grid networks by decentralized control.' The European Physical Journal Special Topics 225.3 (2016): 569-582.]. Several input values are kept the same: averaging time: 2 s; coupling strength: 8 s^-2; damping: 0.1 s^-1

    Attribute Information:

    11 predictive attributes, 1 non-predictive(p1), 2 goal fields:
    1. tau[x]: reaction time of participant (real from the range [0.5,10]s). Tau1 - the value for electricity producer.
      2. p[x]: nominal power consumed(negative)/produced(positive)(real). For consumers from the range [-0.5,-2]s^-2; p1 = abs(p2 + p3 + p4)
      3. g[x]: coefficient (gamma) proportional to price elasticity (real from the range [0.05,1]s^-1). g1 - the value for electricity producer.
      4. stab: the maximal real part of the characteristic equation root (if positive - the system is linearly unstable)(real)
      5. stabf: the stability label of the system (categorical: stable/unstable)

    Relevant Papers:

    Arzamasov, Vadim, Klemens B??hm, and Patrick Jochem. 'Towards Concise Models of Grid Stability.' Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018 IEEE International Conference on. IEEE, 2018  
    (Section V-A)

    Citation Request:

    We thank Dr. Benjamin Sch?¤fer for helping us with the initial version of the code used for simulations.

    -- Creator and donor: Vadim  Arzamasov (vadim.arzamasov '@',
      Department of computer science,
      Karlsruhe Institute of Technology;
      Karlsruhe, 76131; Germany  
      -- Date: November, 2018




    • 分享你的想法


    所需积分:12 去赚积分?
    • 287浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享