Action/Event Detection
modelNet 三维点云数据集

1.9G

1365

0

modelNet 三维点云数据集

Deep Learning

3D Model

modelNet 三维点云数据集前往PC端下载数据

Description

ModelNet 数据集共有 662 种目标分类,127915 个 CAD 模型,以及 10 类标记过方向的数据,旨在为计算机视觉、计算机图形学、机器人和认知科学的研究人员提供全面的物体 3D 模型。

该数据集包含了三个子集:

  • ModelNet10 为 10 个标记朝向的子集数据;

  • ModelNet40 为 40 个类别的三维模型;

  • Aligned40 为 40 类标记的三维模型。

ModelNet 数据集由普林斯顿视觉与机器人实验室于 2015 年发布,主要发布人为 N. Sedaghat, M. Zolfaghari, E. Amiri and T. Brox,相关论文有《3D ShapeNets: A Deep Representation for Volumetric Shapes》


ModelNet Benchmark Leaderboard

Please email Shuran Song to add or update your results.

In your email please provide following information in this format:
Algorithm Name, ModelNet40 Classification, ModelNet40 Retrieval, ModelNet10 Classification, ModelNet10 Retrieval
Author list, Paper title, Conference. link to paper.


Example:
3D-DescriptorNet, -, -, -,92.4%,-
Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian Wu, Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018, http://...


AlgorithmModelNet40
Classification
(Accuracy)
ModelNet40
Retrieval
(mAP)
ModelNet10
Classification
(Accuracy)
ModelNet10
Retrieval
(mAP)
RS-CNN[63]93.6%---
LP-3DCNN[62]92.1%-94.4%-
LDGCNN[61]92.9%---
Primitive-GAN[60]86.4%-92.2%-
3DCapsule [59]92.7%-94.7%-
3D2SeqViews [58]93.40%90.76%94.71%92.12%
OrthographicNet [57]--88.56%86.85%
Ma et al. [56]91.05%84.34%95.29%93.19%
MLVCNN [55]94.16%92.84%--
iMHL [54]97.16%---
HGNN [53]96.6%---
SPNet [52]92.63%85.21%97.25%94.20%
MHBN [51]94.7-95.0-
VIPGAN [50]91.9889.2394.0590.69
Point2Sequence [49]92.60-95.30-
Triplet-Center Loss [48]-88.0%--
PVNet[47]93.2%89.5%--
GVCNN[46]93.1%85.7%--
MLH-MV[45]93.11%
94.80%
MVCNN-New[44]95.0%


SeqViews2SeqLabels[43]93.40%89.09%94.82%91.43%
G3DNet[42]91.13%
93.1%
VSL [41]84.5%
91.0%
3D-CapsNets[40]82.73%70.1%93.08%88.44%
KCNet[39]91.0%
94.4%
FoldingNet[38]88.4%
94.4%
binVoxNetPlus[37]85.47%
92.32%
DeepSets[36]90.3%


3D-DescriptorNet[35]

92.4%
SO-Net[34]93.4%
95.7%
Minto et al.[33]89.3%
93.6%
RotationNet[32]97.37%
98.46%
LonchaNet[31]

94.37
Achlioptas et al. [30]84.5%
95.4%
PANORAMA-ENN [29]95.56%86.34%96.85%93.28%
3D-A-Nets [28]90.5%80.1%

Soltani et al. [27]82.10%


Arvind et al. [26]86.50%


LonchaNet [25]

94.37%
3DmFV-Net [24]91.6%
95.2%
Zanuttigh and Minto [23]87.8%
91.5%
Wang et al. [22]93.8%


ECC [21]83.2%
90.0%
PANORAMA-NN [20]90.7%83.5%91.1%87.4%
MVCNN-MultiRes [19]91.4%


FPNN [18]88.4%


PointNet[17]89.2%


Klokov and Lempitsky[16]91.8%
94.0%
LightNet[15]88.93%
93.94%
Xu and Todorovic[14]81.26%
88.00%
Geometry Image [13]83.9%51.3%88.4%74.9%
Set-convolution [11]90%


PointNet [12]

77.6%
3D-GAN [10]83.3%
91.0%
VRN Ensemble [9]95.54%
97.14%
ORION [8]

93.8%
FusionNet [7]90.8%
93.11%
Pairwise [6]90.7%
92.8%
MVCNN [3]90.1%79.5%

GIFT [5]83.10%81.94%92.35%91.12%
VoxNet [2]83%
92%
DeepPano [4]77.63%76.81%85.45%84.18%
3DShapeNets [1]77%49.2%83.5%68.3%


发表评论
0评